

Borregaard LignoTech is one of the world's leading suppliers of high performance additives and ingredients to the animal feed industry.

High Class Bypass for ruminants

RaPass is a source of rumen bypass protein produced using rape seed expeller meal and a sustainable source of wood sugar, registered in the EU as a feed additive.

Borregaard LignoTech is a leader in bypass protein technology, supplying the European, Middle East and American markets for over 30 years. RaPass provides a cost effective alternative to soybean meal, offering comparable nutritional value especially in terms of digestible rumen bypass protein that is perfect to support today's higher milk and beef production.

Ratio of lysine and methionine in RaPass compared to milk protein, is superior to soya, helping to drive milk production while reducing the reliance on imported soya protein.

Rape seed expeller and extracted meal is a high value vegetable protein source for all livestock but during digestion a significant proportion of this vegetable protein is degraded in the rumen, far too early in the digestive system for the high yielding dairy cow and growing animals to exploit fully. RaPass increases the digestible bypass protein to 55% of the crude protein.

Bypass protein products overcome this problem by protecting the protein while in the rumen, but allowing it to be fully digested within the small intestine. Consequently, better utilization of the essential amino acids occurs, resulting in improved milk production and growth.

RaPass is a high rumen bypass protein feed.

- Dairy trials have shown RaPass fed cows produce significantly more milk compared to heat treated rape extract alone or soya
- The amino acid profile of rape protein is closer to milk than soya bean meal protein.

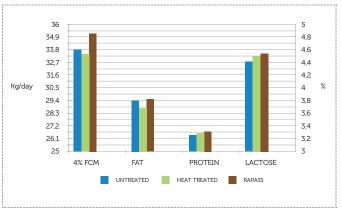
These properties aid the nutritionist in formulating rations that improves milk production, growth rate and/or reduces cost.

www.lignotechfeed.com

RaPass nutritional values (per unit of dm unless otherwise stated)

NRC 2001	
Digestible rumen undegradable protein, g/kg DM	192
Digestible rumen undegradable protein ,% of CP	55
Digestibility of rumen undegradable protein, %	80
Acid detergent fibre insoluble protein (ADIF), % of CP	7.5
Neutral detergent fibre insoluble protein (NDFIP), % of CP	19.4
NEI, Mcal/kg	1.65
NEm, Mcal/kg	1.78
NEg, Mcal/kg	1.16

French values		
PDIN, g/kg DM	259	
PDIE, g/kg DM	262	
PDIA, g/kg DM	201	
Theoretical degradability, % CP	35.6	
dsi	80.0	
UFL,DM	0.83	


German/Dutch values	
UDP, %	70
UDP, g/kg DM	216
nXP, g/kg DM	249
RNB, g/kg DM	2.6
DVE, g/kg DM	223
OBE, g/kg DM	13
VEM, g/kg DM	858
FOS, g/kg DM	377
DVLYS, g/kg DM	12.6
DVMET, g/kg DM	4.9
Digestibility of bypass protein, %	80

British values		
DUP, g/kg DM	195	
ERDP, g/kg DM	101	
ADIN, g/kg DM	3.8	
Metabolisable energy, MJ/kg DM	11.8	
dsi	80.0	
UFL,DM	0.83	

RaPass typical analysis – g/kg product (fresh)				
Dry matter	890	Ca	7.2	
Crude Protein	310	Р	10.7	
Oil	31	Na	0.2	
Crude Fibre	114	Mg	5.6	
Ash	68	К	10.8	
Starch	51	Cl	10.8	
Sugars	69			

Lactation Study Results

- Milk Yield and Composition

J. Dairy Sci. 88:238–243. American Dairy Science Association, 2005. Comparison of treatments to canola meal, comprising 18 lactation Holstein cows in a 3 x 3 Latin square, replicated 6 times, with cows fed an isnitrogenous TMR diet containing 20% of a treatment.

Feeding rates		
Milking Cows	Up to 3 (typically 2)kg	
Dry Cows	Up to 1.5 kg	
Replacement Heifers	Up to 2 kg and up to 25% of the DMI	
Calves (to 12 weeks)	Up to 0.75 kg and up to 20% of the DMI	
Growing Cattle	Up to 2 kg and up to 25% of the DMI	
Finishing Cattle	Up to 3 kg and up to 30% of the DMI	
Suckler Cows	Up to 2 (typically 1)kg	
Ewes and Rams	Up to 0.5 (typically 0.25)kg	
Hoggets and Lambs	Up to 0.5kg and up to 25% of the DMI	

DMI = dry matter intake

Legal disclaimer: Suggested feeding rates are produced as a guide only and many other factors may have an overriding effect on performance. Rations should be carefully balanced for energy and protein, contain sufficient forage to maintain rumen function and be fortified with an appropriate vitamin and mineral supplement. Animals must have constant access to clean water.

